Impact of Genomic Profiling on Treatment Decisions for Patients with Melanoma and Colorectal Cancer Cohorts

Biltaji E1,2, Au T1,3, Keith Gligorich4, Mary P. Bronner4, Stenehjem D1,3, Brixner D1,2
1. Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 2. Program in Personalized Healthcare, University of Utah, Salt Lake City, UT 3. Huntsman Cancer Institute, Salt Lake City, UT 4. Department of Pathology, University of Utah, Salt Lake City, UT

Abstract Number: 66

Background

• Clinical guidelines recommend BRAF and RAS testing in melanoma and colorectal cancer (CRC), respectively, to guide treatment (Tx)
• Limited data supports routine multi-gene profiling

Objective

• To evaluate the impact of multi-gene profiling on genomically-guided Tx

Methods

Study Design & Data Source

• Retrospective cohort study using UUHC Electronic Data Warehouse, Huntsman Cancer Institute (HCI) tumor registry, ARUP laboratories, & Foundation Medicine data

Study Population & Timeline

• Patients treated at HCI for melanoma or CRC and had genomic profiling tested with ARUP solid tumor mutation NGS panel or Foundation One testing panel between Jan 1, 2012 - June 30, 2016
• Index date: date of first genomic profiling result

Outcomes

• Other actionable mutation class, includes mutations that:
 • Do not have an FDA-approved agent for the diagnosed cancer
 • Either has FDA-approved agent used for other cancers, or has an investigational agent affecting mutation pathway
• Impact on practice: measured by rate of genomically-guided therapy use

Results

Table 1. Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Melanoma Cohort (n=123)</th>
<th>Colorectal Cohort (n=66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age at initial cancer diagnosis (years)</td>
<td>60</td>
<td>57</td>
</tr>
<tr>
<td>Sex – male, n (%)</td>
<td>78 (63.4)</td>
<td>42 (63.7)</td>
</tr>
<tr>
<td>Stage at initial cancer diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1 (0.8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>I</td>
<td>22 (17.9)</td>
<td>4 (6.1)</td>
</tr>
<tr>
<td>II</td>
<td>18 (14.6)</td>
<td>7 (10.6)</td>
</tr>
<tr>
<td>III</td>
<td>7 (5.7)</td>
<td>16 (24.2)</td>
</tr>
<tr>
<td>IV</td>
<td>22 (17.9)</td>
<td>34 (51.5)</td>
</tr>
<tr>
<td>Not reported</td>
<td>53 (43.1)</td>
<td>5 (7.6)</td>
</tr>
<tr>
<td>Lines of treatment, mean (SD)</td>
<td>2.2 (1.4)</td>
<td>2.6 (1.4)</td>
</tr>
<tr>
<td>Mutations detected, mean (SD)</td>
<td>1.7 (1.4)</td>
<td>3.6 (1.9)</td>
</tr>
</tbody>
</table>

Figure 1. Actionable mutations vs. selected treatments

Melanoma Cohort

- 15% Other actionable mutations*
- 95% Genomic guided Tx
- 6% Other Tx

CRC Cohort

- 56% Other actionable mutations**
- 44% Genomic guided Tx
- 10% Other Tx

* Besides BRAF V600 E or V600K mutations
** Besides RAS mutations

Figure 2. Current status of patients with any actionable mutation and no genomic guided treatment.

Melanoma Cohort

- 71% Active Tx
- 21% Deceased
- 8% Transferred/Hospice

CRC Cohort

- 55% Active Tx
- 40% Deceased
- 5% Transferred/Hospice

Conclusions

• Genomic profiling led to modest increase in genetically-guided therapy
• The incremental clinical and economic benefit of guideline-recommended testing needs further investigation by cancer type

For more information, please contact Eman Biltaji via email: e.biltaji@utah.edu

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® and the author of this poster.